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Abstract. The single-frequency cluster model for the Jahn-Teller effect and the multimode 
model for an arbitrary phonon spectrum are shown to give the same low-temperature 
optical absorption spectrum in the limit of strong coupling for a variety of different 
Jahn-Teller systems. This result will be of considerable value in the interpretation of band 
shapes because of the practical difficulty of calculating multimode band shapes directly. The 
parameters of the cluster model appropriate for the optical spectrum differ from those 
previously given for the description of the multimode ground state. 

1. Introduction 

The Jahn-Teller effect of an impurity in a crystal involves the interaction of the localised 
electronic states with a large number of vibrational modes in the solid. The effects of 
this interaction appear in both the properties of the impurity and in the vibrational 
behaviour of the host. The theoretical treatment of such systems is not easy, and most 
experimental results have been interpreted in terms of the so-called cluster model. 
Originally the cluster model studied the behaviour of the impurity and its neighbours 
under the drastic assumption that the rest of the solid could be ignored (Van Vleck 
1939). More recently the cluster model has come to mean a model having the same 
mathematical form of Hamiltonian as that for the isolated cluster, but the vibrational 
states of this Hamiltonian do not refer simply to the motions of the nearest neighbours; 
the motions of the surrounding lattice are partially included. Several attempts have 
been made in recent years to derive the cluster model from a more complete picture. 
The privileged mode method (O’Brien 1972, Fletcher et a1 1972, Halperin and 
Englman 1974) shows that the cluster model is valid for the description of the 
low-energy states provided that the phonons of the host occupy a narrow band of 
energies. The method gives a prescription for the parameters of the cluster in terms of 
summations over the phonon spectrum, and shows how the cluster model is modified as 
the width of the phonon band is increased. The variational method (Fletcher 1972) 
indicates that the cluster model should be valid in the limit of strong coupling and shows 
that the model requires modification at finite coupling strength. The weakness of the 
variational method is that it is difficult to estimate the accuracy of the results derived. 

In this paper, the method described in the preceding paper (Fletcher 1980) for 
finding the predominant states of an interacting system is applied to the problem of a 
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localised electronic system in a solid interacting with the full spectrum of lattice 
phonons. In the representation generated by this method, the matrix elements of the 
Hamiltonian are all determined by the moments of the Hamiltonian evaluated within 
the uncoupled ground state. We shall show that the leading terms of these moments for 
strong electron-phonon coupling evaluated for the full phonon spectrum are equal to 
the terms evaluated for coupling to a single average vibrational frequency with a 
suitably chosen coupling strength. Thus the matrix generated by this procedure for the 
strongly coupled multimode system is the same as that of the cluster model. We already 
know (O'Brien and Evangelou 1980) that this tri-diagonal matrix is appropriate for the 
calculation of the low-temperature optical absorption spectrum, and therefore the 
spectrum of the multimode system becomes equal to that of the cluster model in the 
limit of strong coupling. 

The cluster model parameters predicted by this method differ from those given 
previously by the privileged mode and variational methods. It has already been shown 
(O'Brien and Evangelou 1980) that the privileged mode parameters give a reasonably 
good description of the two-mode optical spectrum of the E x e  system, and it is 
therefore of interest to compare the fit to the two-mode spectrum given by the new 
parameters with that already found. 

In order to make this comparison and to illustrate the calculation of matrix elements 
the procedure is carried out in detail for the multimode E X  e Jahn-Teller system. It is 
found that the new parameters for the cluster model give a better fit to the optical 
spectrum than those from the privileged mode method. 

2. Derivation of the cluster parameters for absorption in strong coupling 

In this section we show very generally that there is a choice of cluster parameters that 
makes the largest tkrms in any moment of the form (O/X"IO) the same for the multimode 
and the cluster Hamiltonian. 

We first take a general form for the Hamiltonian containing linear Jahn-Teller 
coupling: 

2 = Xo + B + L, (2.1) 

where X o  is the uncoupled phonon Hamiltonian 

i I i 

and 1 is the unit matrix in the space of electron wavefunctions. B is the Hamiltonian for 
linear Jahn-Teller coupling, which can be written 

where U,, v,,, , , . are matrices in the electron space, and we assume that the phonons 
come in symmetry-connected sets, so that, for instance, xl, y1 and z1 all have the same 
coupling coefficient gl and the same frequency w l .  L represents other terms in the 
Hamiltonian that are independent of the phonon operators, such as, for instance, the 
spin-orbit coupling, an electronic splitting in a pseudo-Jahn-Teller system, or the effect 
of a magnetic field or stress. L is simply a matrix in the electronic space. 
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As we are interested in optical transitions from an electronic singlet into the 
Jahn-Teller states, we shall look at the moments (0~2""lO) of the Hamiltonian, where 10) 
is the uncoupled ground state, and pick out the dominant terms when the coupling is 
strong. By strong coupling we mean that B is much more important than Xo,  while L 
msy be as big as B, or it may be smaller. Accordingly, we start by looking at 

+ L)" 10). 

where the matrices V will be produced in a complicated way by taking products of the 
non-commuting matrices a,, fly, L . . . in various orders. In order to find the moments, 
these V's would have to be worked out, but all we need to know at this stage is that each 
V will depend only on the symmetry type of the problem, not on the particular gi's and 
W j ' S .  

The phonon part of the uncoupled ground state 10) is just a product of phonon 
ground states for all the different modes; hence we need to find the expectation value of 
a typical operator such as (Ei gixi)". Now 

( 2 . 5 )  
(n l+nz+.  . . = n )  

and the ground state expectation value of xYi is zero if ni is odd, and ( 2 p i ) ! / p , !  4'! if ni is 
even and equal to 2 p .  This means that for a non-zero expectation value all the 
n l ,  n 2 , .  . . must be even, and hence n must be even. Then 

( P l + P 2 + .  . . = p )  

We thus see that all the expectation values of the type we are talking about are the same 
if C, gixi is replaced by g o x  with 

g6 = c gT, 
i 

( 2 . 7 )  

and similarly for E i g i y i  and so on. This means that the same substitution works for 

The next largest terms of ( O l Y l O )  are assumed to be those containing just one 
power of X0, which, because of the non-commutativity, must be written (01 Cs (B + 
L)"--sXo(B + L)'IO). Again we make no attempt to sort out the commutation properties 
of the matrices, but simply notice that the phonon part of the most general type of term 

(OKB +L)" IO) .  
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will look like 

After splitting up the X i  w iE i  into its x ,  y, . . , terms a typical one looks like 

and the only new problem to deal with here is terms like that in x above. Now this term 
can be written 

B " ~ - ~ I X ~ B ~ ~  = B " I X ~ + .  . . ~ " 1 - l ~  +. . . + B"~-'D +. . . +, . , , (2.10) 

C R O ,  BI = c, re, BI = D, [D, BI = E, etc, (2.11) 

where 

and the ellipses indicate numerical coefficients that can be calculated (by induction) but 
are of no importance here. The commutators are 

[C, B ] =  -E wigi = D, [D, BI = 0, 
i 

so we only need to work out three types of expectation value: 

(0IB"XolO) = 0, 

because X o  i s  just the phonon energy operator; 

for which see below; and 

which is equal to 

-g;wo(ol(gox)" 10) 

if w o  is defined by 

and go is as already defined above. 
To calculate (0lB"ClO) note that 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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and pick out the term in w 1  a/axl,  so that for non-zero matrix elements nl  must be odd, 
n2, n3,. . . even, and we have 

Now operating on the ground state 

-(a/ax,)l0) = X I I O )  

so the expectation value of this term is 

(2.20) 

and finally doing the sum over giwi a/axl leaves us with an expectation value of 

(2.21) 

(2.22) 

which is exactly what we would have got for the single-mode case with 

(2.23) 

We have thus shown that, up to terms containing a single power of w ,  the 

2 
gowo = g’wi. 

i 

single-mode and multimode values of ( O l W  IO) are identical as long as 

g ;  =e g’. (2.24) 

We shall show in the section treating E X  e that the moments involving more than a 
single X 0  factor are not needed in calculating the leading terms of the matrix elements. 
Thus the matrix elements and optical spectrum for the multimode system can be 
calculated in the strong-coupling limit by using a single-frequency cluster model, with 
interaction constant 

2 
gowo = c g ? o ,  

i i 

1/2 

go = (? g?)  (2.25) 

and frequency 
-1  

WO=(? g f w i ) ( F  g t )  (2.26) 
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3. Application to E x X ,  ei system 

In the theoretical studies of the Jahn-Teller interaction with a lattice it is usual to start 
by ignoring the complications caused by spin-orbit coupling, lattice anharmonicity, etc 
and to include in the Hamiltonian only the linear interaction of the E symmetry 
vibrations of a cubic or trigonal crystal with an E pair of localised electronic states. 
Following the previous notation (Fletcher 1972) 

x=c Awi(CfCi+d:di)+gi[T+(ci+dr)+ T-(C? +dJ]=Ho+B (3.1) 
i 

and 

The phonon operators c f  and d :  transform as the components 8 + ie and 8 - ia of 
the E representation of the cubic group 0. 

The initial state for evaluation of the moments of %' is taken to be the unperturbed 
ground state 10, T3 = +$>. There are two reasons for this choice. Firstly it appears to be 
the simplest choice for the evaluation of the expectation values of X", and secondly it is 
the appropriate starting state for optical absorption from an electronic singlet state into 
the Jahn-Teller states. We then have to evaluate 

E,, = (0, +;I(Ho + B)"IO, +$). (3.4) 

Each factor of B involves a change of the T state, and so in expanding (Ho + B)" only 
the terms containing an even number of B factors contribute to E,. The general term is 
difficult to evaluate, and in this paper we concentrate on the strong-coupling limit. In 
order to calculate D, and E,, (Fletcher 1980) in this limit we shall see that the only 
expectation values necessary are 

E2p = (0, +flBZPIO, +;) 

~ 5 2 ~ + 1  = ( O ,  +;/WO, BZpIIO, +;), 

(3.5) 
and 

(3.6) 

where the braces indicate that the factors are taken in all possible orders. Terms 
involving more Ho factors lead to smaller correction terms. 

Writing 

and 
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where 10) is the phonon ground state. Using [ V+, V-1- = 0 ,  

(3.10) 

The phonon creation and destruction operators can be paired in p !  ways. Therefore 

(3.11) 

The odd-order expectation values can be evaluated in several ways. The simplest 
way is to note that, for large p, 

where the factor p !  comes from the pairing of V+ and V- as before, and the coefficient 
C ( p )  is O(p2) ,  with a factor O ( p )  from the ordering of the operators and a factor O ( p )  
from the maximum number of phonons created. Thus it is only necessary to evaluate 
the first few coefficients C ( p )  in detail and then fit the values by a second-order 
polynomial in p .  This polynomial will then be correct for all p .  This gives 

p > o .  (3.13) 

This result can also be derived rigorously by the method of 9 2, equation (2.10). 
The omitted parts of the expectation values involving more Ho factors lead to terms 

with more of the gi factors replaced by wi. The condition for strong coupling is that the 
average phonon energy is less than the Jahn-Teller energy, i.e. 

where 

i.e. 

(3.14) 

(3.15) 

(3.16) 

This ensures that the omitted terms are of lower order in the interaction strength. 

4. Matrix elements in the new representation for E x e 

In the expansion of the determinant D, = det M,, all the terms are O(n2 - n )  in energy. 
As this is an even power of energy, the leading term in the interaction strength involves 
factors of C g 2  only, and factors of h Z g2u contribute to lower-order terms. Omitting 
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the lower-order terms gives a factorisation of the determinant, for example, 

The determinants of factorials can be reduced by systematically combining columns, 
leading to the results 

D2,,+1 = ( n ! ! ) 2 ( n  - l)!! ( ; g' )2n*+n ,  (4.3) 

wheren!!=1!2!3!  . . .  n ! .  
In the expansion of the determinant F,, = det W,,, all the terms are O(n2 - n + 1) in 

energy. As this is an odd power of energy, the leading term must involve a single factor 
of h C; g:wi. This does not lead to a factorisation of the determinant, and we must 
proceed in a different way to discover the general form for F,,. 

From equation (8) of the preceding paper (Fletcher 1980) 

F,, 
-= Xss. 
D,, s=i 

(4.4) 

From the way in which the states IS) are constructed by repeated operation of 2, the 
number of phonons in IS) cannot exceed S - 1. Therefore, for large n, 

F,,/D,, = O(n2).  (4.5) 

The leading terms of F,, up to n = 5 have been evaluated and have been found to 

(4.6) 

agree with the formula 

F,, = i n  ( n  - l)D,, hwo, 

which must therefore be valid for all n. 
The diagonal matrix elements in the new representation are given by 

X,,,, = F,,D,' -Ff l - lDiI l  = (n - l )hwo,  (4.7) 

and the matrix elements adjacent to the diagonal are of two kinds: 

and 

(4.8) 

(4.9) 

The matrix elements were generated from the initial state 10, +;) having quantum 
number M = +;. As [M, 21- = 0, all the states generated also have M = +i. The same 
set of matrix elements can also be generated for M = - 4, but it is not apparent how the 
method can be generalised to include states with values of M other than these. 
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Comparing the above matrix elements with those of the cluster model within M = i, 

(4.10) 

we see they are the matrix elements of the Hamiltonian 

Xc  = ~ W O ( C ~ C  + d i d )  +go[T+(c + d t )  + T-(c’ i d ) ] ,  

where 

and 

g; =I g’. 
I 

(4.1 1) 

(4.12) 

This is the Hamiltonian of a cluster model for the interaction of an E electronic state 
with a pair of vibrational modes having a frequency which is a weighted average of the 
phonon frequencies. Thus the conclusions of § 2 have been verified in detail for the 
M = 4 states of E x  e. 

Note that it is not possible to give a simple relationship between the operators of X c  
and those of the original Hamiltonian. This is because the states generated in the 
procedure used to derive X c  are complicated combinations of lattice states with 
differing numbers of phonons. XC is analogous to a spin-Hamiltonian involving a 
fictitious spin which is arranged to have matrix elements appropriate to a physical 
system, although the states of the fictitious spin are not those of the real spin. Thus the 
Ham relation between reduction factors does not necessarily hold for these states (Ham 
1968, Halperin and Englman 1973, Leung and Kleiner 1974). 

5. Comparison with privileged mode method 

The privileged mode method (O’Brien 1972, Fletcher et a1 1972) also leads to a cluster 
model as a description of the Jahn-Teller lattice interaction, but the parameters of the 
cluster are given by different summations over the phonon spectrum: 

and 
2 2  2 -1 

g : f f = ( $ y  w .  (1%) , W j  
’ 

Although these results are valid under different conditions from those derived 
above, it is of interest to see how much they differ when evaluated for a simple phonon 
spectrum. In the long-wavelength limit, gi - w ! ’ ~ .  Using this form to evaluate the 
summations gives 

6 
W o I W e f f  = 5 (5.3) 

and 
9 d l d f f  = ti. (5.4) 

Thus the cluster parameters predicted by these two methods differ by 10-20%, while in 
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the two-mode case described in § 6, which could represent coupling to optic as well as 
acoustic branches, the difference is more like 40%. 

The leading term in the lowest energy of the cluster model is - $ g 2 / o ,  with g and w 
appropriate for either model. By the usual variational argument, the state having the 
lower energy is a more accurate approximation to the true ground state. The quantity 

can be shown to be always positive, and we conclude that the privileged mode method 
gives a better description of the ground state. 

Comparison of the formulae shows that the privileged mode method gives a 
relatively greater weight to the low-frequency phonons than that given by the method of 
predominant states. It has also been shown by Halperin and Englman (1975) in the 
variational modification of the privileged mode method, that the original privileged 
mode method overestimates the contribution from the low-frequency phonons to the 
ground state, and needs to be applied with a low-frequency cut-off. 

6. Optical absorption spectrum of E x (el + e*) 

In order to illustrate the success of this new cluster model in predicting the band shape 
for the low-temperature optical absorption, we have used it on the very simple 
multimode system of an E electronic doublet coupled to two E phonon modes of 
different frequencies. The method of calculation has been described in an earlier paper 
(O’Brien and Evangelou 1980), but here, unlike the earlier paper, the two-mode band 
shapes are compared with cluster band shapes calculated using the parameters pro- 
posed in this paper. Figure 1 shows the comparison for values of gg ranging from 19 to 
0.6, and the agreement is startlingly close. It is particularly surprising that what is 
supposed to be a strong-coupling approximation works so well for such small values of 
g:. The band shapes are produced as line spectra, which are then smoothed by 
convolution with a Gaussian, the width of the Gaussian being chosen to be just sufficient 
to smooth out the line structure. The need for smoothing results from computational 
difficulties; shortages of computer space and time lead to truncation errors which, in 
most cases, invalidate the details of the calculated two-mode line spectrum, while the 
corresponding smoothed band shape can be reliably computed. The justification for 
using the smoothed band shapes lies in the inevitable existence of smoothing processes 
in real solids. Our choice of a Gaussian for smoothing is a matter of convenience; other 
functions would do for comparison between different calculations and might be more 
appropriate for comparison with particular experimental results. The smoothing 
inevitably hides the difference in the line density of the one- and two-mode systems, and 
to illustrate the difference we show the actual lines under the smoothed shape for 
gg = 1 - 3  (figure 2). This is the largest value of g: for which we can rely on individual 
lines in the two-mode calculation, and even here only those for E < hwo are relatively 
free of truncation errors. However, it is clear that here the very similar band shapes 
result from smoothing very different line spectra. Looking at figure 2 we see how the 
smoothing improves the agreement between the one- and two-mode band shapes when 
gi is small, but we should remember that when go2 is large the width of the smoothing 
function is a much smaller proportion of the band width. It would be nice to be able to 
make a similar comparison of line spectra for large values of g:, but this we cannot do. 
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Figure 1. Computed band shapes compared for a two-mode calculation (full curves) and the 
equivalent cluster model (broken curves). Energies are in units of hwo, and the curves are 
produced by convoluting a line spectrum with a Gaussian, e-='*. In every case parameters 
for the two e modes are related by w2 = 3 w l ,  g2 = 3gl. Other parameters are: ( a )  gi = 19.1, 
~r ~0.8; ( b )  gi =9.6, (Y = 1.6; (c) g i  = 3.2, a = 1.3; (d )  g; = 0.64, a = 1.3. 

7. Optical absorption in other multimode Jahn-Teller systems 

The calculations in § 2 were done in greater generality than was needed for working out 
E x e because of the importance of being able to apply this strong-coupling approxima- 
tion to most other Jahn-Teller systems. Most of these systems are more complicated 
than E x e, and there is little hope of being able to calculate even two-mode absorption 
band shapes, let alone multimode ones, yet we know that the multimode nature of the 
systems must be important. The possibility of doing cluster model band shape cal- 
culations does exist, producing a tri-diagonal matrix by the Lanczos process (O'Brien 
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E hinits of hwO) 

Figure 2. Computed band shapes and their underlying line spectra compared for a 
two-model calculation (full curve and lines) and the equivalent cluster model (broken curve 
and lines). Energies are in units of hwo. Parameters are a = 1.5, g i  = 1.3, w2 = 3w1, 

g2 = 3g1. (See remark in the text about truncation errors on the line spectrum.) 

and Evangelou 1980). The preceding paper (Fletcher 1980) shows that the tri-diagonal 
matrix elements depend only on the moments ( O ~ % " ~ O ) ,  and the calculations of 0 2 tell 
us that, at least in strong coupling, the moments are the same in our new cluster model as 
in the multimode case. This applies very generally to linearly coupled Jahn-Teller 
systems, including those with spin-orbit coupling and pseudo-Jahn-Teller systems with 
an initial electronic splitting. We conclude, therefore, that we should expect to be able, 
in general, to fit Jahn-Teller band shapes on the cluster model if the coupling strength 
and effective frequency are regarded as adjustable parameters, and that furthermore 
the existence of such a fit is not evidence that the coupling is not really to many modes. 

8. Conclusions 

A mathematical transformation of the Hamiltonian of the Jahn-Teller lattice inter- 
action has been shown to lead to the single-frequency cluster model in the limit of strong 
interaction, whatever the form of the phonon spectrum. The parameters of this cluster 
model are found to be different from those derived previously by the privileged mode 
method. 

In the comparison of the two-mode E x e absorption spectrum with the cluster 
model spectra for parameters chosen by the privileged mode method and by the 
predominant states method, it is found that a better fit is given by the parameters 
determined by the method of predominant states. On the other hand, the privileged 
mode model gives a lower ground state energy and, therefore, a more accurate ground 
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state wavefunction. The reason for the difference between the parameters of the 
models is that neither is an exact description of a multimode system. The privileged 
mode and variational methods optimise the description of the ground state without 
reference to the higher-energy states. The predominant states method selects states 
according to their coupling to the unperturbed phonon ground state, and these are the 
states involved in optical absorption. Thus we conclude that both the optical absorption 
spectrum and the ground state properties of strongly coupled Jahn-Teller systems can 
be described by cluster models, but there is no reason to expect that the frequency and 
coupling of the clusters should be the same in the two cases. 
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